论文摘要

Vital sign detection is used across ubiquitous scenarios in medical and health settings, and contact and wearable sensors have been widely deployed. However, they are unsuitable for patients with burn wounds or infants with insufcient areas for attachment.

Contactless detection can be achieved using camera imaging, but it is susceptible to ambient light conditions and has privacy concerns. Here we report a photonic radar for non-contact vital sign detection to overcome these challenges. This photonic radar can achieve millimetre-level range resolution based on synthesized radar signals with a bandwidth of up to 30 GHz. The high resolution of the radar system enables accurate respiratory detection from breathing simulators and a cane toad as a human proxy. Moreover, we demonstrate that the optical signals generated from the proposed system can enable vital sign detection based on light detection and ranging (LiDAR). This demonstration reveals the potential of a sensor-fusion architecture that can combine the complementary features of radar and LiDAR to achieve improved sensing accuracy and system resilience. The work provides a technical basis for contactless and high-resolution vital sign detection to meet the increasing demands of future medical and healthcare applications.


Contactless detection can be achieved using camera imaging, but it is susceptible to ambient light conditions and has privacy concerns. Here we report a photonic radar for non-contact vital sign detection to overcome these challenges. This photonic radar can achieve millimetre-level range resolution based on synthesized radar signals with a bandwidth of up to 30 GHz. The high resolution of the radar system enables accurate respiratory detection from breathing simulators and a cane toad as a human proxy. Moreover, we demonstrate that the optical signals generated from the proposed system can enable vital sign detection based on light detection and ranging (LiDAR). This demonstration reveals the potential of a sensor-fusion architecture that can combine the complementary features of radar and LiDAR to achieve improved sensing accuracy and system resilience. The work provides a technical basis for contactless and high-resolution vital sign detection to meet the increasing demands of future medical and healthcare applications.

推荐理由

Vital sign detection is used across ubiquitous scenarios in medical and health settings, and contact and wearable sensors have been widely deployed. However, they are unsuitable for patients with burn wounds or infants with insufcient areas for attachment. Contactless detection can be achieved using camera imaging, but it is susceptible to ambient light conditions and has privacy concerns. Here we report a photonic radar for non-contact vital sign detection to overcome these challenges. This photonic radar can achieve millimetre-level range resolution based on synthesized radar signals with a bandwidth of up to 30 GHz. The high resolution of the radar system enables accurate respiratory detection from breathing simulators and a cane toad as a human proxy. Moreover, we demonstrate that the optical signals generated from the proposed system can enable vital sign detection based on light detection and ranging (LiDAR). This demonstration reveals the potential of a sensor-fusion architecture that can combine the complementary features of radar and LiDAR to achieve improved sensing accuracy and system resilience. The work provides a technical basis for contactless and high-resolution vital sign detection to meet the increasing demands of future medical and healthcare applications.

在2023年10月的投资者会议上,Nvidia展示了其全新的GPU发展蓝图 [1]。与以往两年一次的更新节奏不同,这次的路线图将演进周期缩短至一年。预计在2024年,Nvidia将推出H200和B100 GPU;到2025年,X100 GPU也将面世。其AI芯片规划的战略核心是“One Architecture”统一架构,支持在任何地方进行模型训练和部署,无论是数据中心还是边缘设备,无论是x86架构还是Arm架构。其解决方案适用于超大规模数据中心的训练任务,也可以满足企业级用户的边缘计算需求。AI芯片从两年一次的更新周期转变为一年一次的更新周期,反映了其产品开发速度的加快和对市场变化的快速响应。其AI芯片布局涵盖了训练和推理两个人工智能关键应用,训练推理融合,并侧重推理。同时支持x86和Arm两种不同硬件生态。在市场定位方面,同时面向超大规模云计算和企业级用户,以满足不同需求。Nvidia旨在通过统一的架构、广泛的硬件支持、快速的产品更新周期以及面向不同市场提供全面的差异化的AI解决方案,从而在人工智能领域保持技术和市场的领先地位。Nvidia是一个同时拥有 GPU、CPU和DPU的计算芯片和系统公司。Nvidia通过NVLink、NVSwitch和NVLink C2C技术将CPU、GPU进行灵活连接组合形成统一的硬件架构,并于CUDA一起形成完整的软硬件生态。

Continue Reading
All Articles
© 2025 Mooncyan